4.6 Article

Novel Generation Mycobacterial Adjuvant Based on Liposome-Encapsulated Monomycoloyl Glycerol from Mycobacterium bovis Bacillus Calmette-Guerin

Journal

JOURNAL OF IMMUNOLOGY
Volume 183, Issue 4, Pages 2294-2302

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0804091

Keywords

-

Categories

Funding

  1. European Commission [LSHP-CT-2003-503367]
  2. James Bardrick Research Chair
  3. Royal Society Wolfson Research Merit Award
  4. Medical Research Council (U.K.)
  5. Wellcome Trust
  6. MRC [G0200510] Funding Source: UKRI
  7. Medical Research Council [G0200510] Funding Source: researchfish

Ask authors/readers for more resources

The immunostimulatory activity of lipids associated with the mycobacterial cell wall has been recognized for several decades and exploited in a large variety of different adjuvant preparations. Previously, we have shown that a mycobacterial lipid extract from Mycobacterium bovis bacillus Calmette-Guerin delivered in cationic liposomes was a particular efficient Th1-inducing adjuvant formulation effective against tuberculosis. Herein, we have dissected the adjuvant activity of the bacillus Calmette-Guerin lipid extract showing that the majority of the activity was attributable to the apolar lipids and more specifically to a single lipid, monomycoloyl glycerol (MMG), previously also shown to stimulate human dendritic cells. Delivered in cationic liposomes, MMG induced the most prominent Th1-biased immune response that provided significant protection against tuberculosis. Importantly, a simple synthetic analog of MMG, based on a 32 carbon mycolic acid, was found to give rise to comparable high Th1-biased responses with a major representation of polyfunctional CD4 T cells coexpressing IFN-gamma, TNF-alpha, and IL-2. Furthermore, comparable activity was shown by an even simpler monoacyl glycerol analog, based on octadecanoic acid. The use of these synthetic analogs of MMG represents a promising new strategy for exploiting the immunostimulatory activity and adjuvant potential of components from the mycobacterial cell wall without the associated toxicity issues observed with complex mycobacterial preparations. The Journal of Immunology, 2009, 183: 2294-2302.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available