4.6 Article

Lessons from Thymic Epithelial Heterogeneity: FoxN1 and Tissue-Restricted Gene Expression by Extrathymic, Endodermally Derived Epithelium

Journal

JOURNAL OF IMMUNOLOGY
Volume 183, Issue 8, Pages 5042-5049

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0901371

Keywords

-

Categories

Funding

  1. National Institute of Allergy and Infectious Diseases, National Institutes of Health [AI09575]

Ask authors/readers for more resources

Modeling of thymic epithelial differentiation has been guided by several important underlying assumptions. One is that within epithelial tissues derived from pharyngeal endoderm, FoxN1 expression is signature for the thymic epithelial lineage. Another is that expression of tissue-restricted Ag (TRA) is a unique feature of thymic epithelium. In this murine study, we evaluate the thymic expression of a subset of TRA, parathyroid hormone, calcitonin, and thyroglobulin, as part of an effort to better define the heterogeneity of medullary thymic epithelial cells. In this study, we demonstrate that both conventional and cystic epithelial cells display a history of FoxN1 expression using a cre-lox approach. We also document that extrathymic epithelial tissues that originate from pharyngeal endoderm also have a history of FoxN1 expression, indicating that FoxN1 expression per se is not a signature for the thymic lineage and suggesting that FoxN1 expression, whereas necessary for thymic epithelium, development, is not sufficient for this process to occur. Both cystic and conventional medullary thymic epithelial cells express these TRAs, as do extrathymic epithelial tissues that are not usually considered to be sources of these molecules. This finding supports the proposition that promiscuous gene expression is not unique to the thymus. Furthermore, the pattern of promiscuous gene expression in these extrathymic epithelia is consistent with developmental regulation processes and suggests that it is premature to discard the possibility that some promiscuous gene expression in the thymus reflects normal differentiation programs of epithelia. The Journal of Immunology, 2009, 183: 5042-5049.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available