4.6 Article

An In Vitro System to Model the Establishment and Reactivation of HIV-1 Latency

Journal

JOURNAL OF IMMUNOLOGY
Volume 181, Issue 11, Pages 7713-7720

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.181.11.7713

Keywords

-

Categories

Ask authors/readers for more resources

HIV-1 establishes latency primarily by infecting activated CD4(+) T cells that later return to quiescence as memory cells. Latency allows HIV-1 to evade immune responses and to persist during antiretroviral therapy, which represents an important problem in clinical practice. The lack of a valid cellular model to study HIV-1 latency has hindered advances in the understanding of its biology. In this study, we attempted to model HIV-1 latency using human primary CD4(+) T cells infected in vitro with HIV-1 after activation with Ag-loaded dendritic cells and then brought back to quiescence through a resting phase in the presence of IL-7. During the resting phase, expression of cellular activation markers disappeared and cell proliferation and viral replication ceased, but resumed following restimulation of rested cells with Ag or mAbs directed to CD3/CD28. In addition, higher cell death rates were observed in HIV-1-infected than uninfected cultures during secondary but not primary stimulation. Thus, this system may allow us to study the biology of HIV-1 latency, as well as the mechanisms of CD4(+) T cell death following HIV-1 reactivation. The Journal of Immunology, 2008, 181: 7713-7720.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available