4.6 Article

Activation of human NK cells by the bacterial pathogen-associated molecular pattern muramyl dipeptide

Journal

JOURNAL OF IMMUNOLOGY
Volume 180, Issue 6, Pages 4082-4089

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.180.6.4082

Keywords

-

Categories

Ask authors/readers for more resources

Muramyl dipeptide (MDP) is a bacterial pathogen associated molecular pattern derived from both Gram-positive and -negative bacteria. It is a specific ligand for nuclear oligomerization domain 2, a pattern recognition receptor best characterized for its role in immunosurveillance in the gut. In this study, we demonstrate that human peripheral blood NK cells express nuclear oligomerization domain 2 and respond to MDP. NK cells naturally internalize MDP leading to direct cell activation, including signaling through NF kappa B: characterized by p50/p65 heterodimers at early stimulations times and sustained activation of p50 homodimers. Moreover, MDP synergizes with IFN-alpha and IL-12 to activate NK cells and stimulate IFN-gamma secretion, suggesting a role for accessory cells in induction of an optimal NK cell response. Although IL-12 costimulation leads to a greater IFN-gamma response by NK cells, higher levels of CD69 in response to MDP are induced in the presence of IFN-alpha, suggesting that different pathogen-induced cytokine profiles will affect downstream NK cell responses. In contrast, MDP alone or in combination with either IFN-alpha or IL-12 only poorly increases NK cell cytotoxicity. In summary, this report identifies MDP as a bacterial pathogen associated molecular pattern that activates human NK cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available