4.6 Article

ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo

Journal

JOURNAL OF IMMUNOLOGY
Volume 180, Issue 12, Pages 8093-8101

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.180.12.8093

Keywords

-

Categories

Ask authors/readers for more resources

During an acute immune response, CD8 T cells undergo rapid expansion followed by a contraction phase during which the majority of activated T cells die, leaving a few survivors to persist as memory cells. The regulation of T cell survival is critical at each stage of this response. 4-1BB, a TNFR family member, has been implicated in prolonging the survival of activated and memory CD8 T cells; however, the precise mechanisms by which 4-1BB sustains T cell survival are incompletely understood. Upon aggregation on T cells, 4-1BB associates with two TNFR-associated factors (TRAF), TRAF1 and TRAF2. TRAF2 is essential for downstream signaling from 4-1BB; however, the role of TRAF1 in 4-1BB signaling has not been elucidated and there have been conflicting data as to whether TRAF1 provides a positive or a negative signal in T cells. In this study, we report that TRAF1 plays a critical role in survival signaling downstream of 4-1BB during CD8 T cell expansion in response to viral infection in vivo. Further analysis reveals that TRAF1-deficient cells are impaired in their ability to up-regulate the prosurvival Bcl-2 family member Bcl-x(L), and show increased levels of the proapoptotic Bcl-2 family member Bim following 4-1BB signaling. TRAF1-deficient CD8 T cells fail to activate ERK in response to 4-1BB ligation and inhibition of ERK signaling downstream of 4-1BB in wild-type cells leads to increased Bim levels. Thus, TRAF1 has a prosurvival effect in CD8 T cells via the 4-1BB-mediated up-regulation of Bcl-x(L) and ERK-dependent Bim down-modulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available