4.2 Article

Specific antibody immobilization with biotin-poly(L-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips

Journal

JOURNAL OF IMMUNOLOGICAL METHODS
Volume 350, Issue 1-2, Pages 97-105

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jim.2009.07.011

Keywords

Immunoassay; Microfluidic biochip; Antibody immobilization; Biotin-poly(L-lysine)-g-poly(ethylene glycol); Protein A

Funding

  1. National Science Foundation [DMI0419585]

Ask authors/readers for more resources

Highly efficient antibody immobilization is crucial for conducting high-performance immunoassays such as enzyme-linked immunosorbent assay (ELISA) in microarray and microfluidic biochips. In this study, a biotin-poly(L-lysine)-g-poly(ethylene glycol) (biotin-PLL-g-PEG) and protein A-based technique was developed to immobilize antibody on the surface of poly(methyl methacrylate) (PMMA) microchannels. First, PMMA surface was activated by oxygen plasma, followed by poly (acrylic acid) (PAA) grafting to add functional carboxyl group for subsequent binding. After the biotin-PLL-g-PEG molecules reacted with carboxyl groups through the electrostatic interactions, biotinylated protein A was immobilized on the surface through a linking molecule, neutravidin. To evaluate the applicability of this novel immobilization strategy, human interferon-gamma (IFN-gamma) was used as a model protein. Since protein A could better control the immobilization orientation, and the combination of biotin-PLL-g-PEG and PLL-g-PEG could adjust the conformation of antibodies, antigen capture efficiency and detection signals were significantly improved on the microchips by using this strategy. The optimal grafting conditions were also experimentally determined: the biotin grafting ratio of 0.189 in the PLL-g-PEG molecule and the mixture ratio of 85% (biotin-PLL-g-PEG to PLL-g-PEG). This surface modification can be applied for targeted drug delivery, biosensor and other immunoassay applications. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available