4.7 Article

Climate change impacts on groundwater and dependent ecosystems

Journal

JOURNAL OF HYDROLOGY
Volume 518, Issue -, Pages 250-266

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2013.06.037

Keywords

Groundwater; Climate; Ecosystems; Global change; Land use; Management

Funding

  1. EC 7th framework Project GENESIS [226536]

Ask authors/readers for more resources

Aquifers and groundwater-dependent ecosystems (GDEs) are facing increasing pressure from water consumption, irrigation and climate change. These pressures modify groundwater levels and their temporal patterns and threaten vital ecosystem services such as arable land irrigation and ecosystem water requirements, especially during droughts. This review examines climate change effects on groundwater and dependent ecosystems. The mechanisms affecting natural variability in the global climate and the consequences of climate and land use changes due to anthropogenic influences are summarised based on studies from different hydrogeological strata and climate zones. The impacts on ecosystems are discussed based on current findings on factors influencing the biodiversity and functioning of aquatic and terrestrial ecosystems. The influence of changes to groundwater on GDE biodiversity and future threats posed by climate change is reviewed, using information mainly from surface water studies and knowledge of aquifer and groundwater ecosystems. Several gaps in research are identified. Due to lack of understanding of several key processes, the uncertainty associated with management techniques such as numerical modelling is high. The possibilities and roles of new methodologies such as indicators and modelling methods are discussed in the context of integrated groundwater resources management. Examples are provided of management impacts on groundwater, with recommendations on sustainable management of groundwater. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available