4.7 Article

Assessing hydrologic prediction uncertainty resulting from soft land cover classification

Journal

JOURNAL OF HYDROLOGY
Volume 517, Issue -, Pages 411-424

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2014.05.049

Keywords

Classification uncertainty; Monte Carlo simulation; Hydrology; Land cover map; Random Forests; Optical imagery

Ask authors/readers for more resources

For predictions in ungauged basins (PUB), environmental data is generally not available and needs to be inferred by indirect means. Existing technologies such as remote sensing are valuable tools for estimating the lacking data, as these technologies become more widely available and have a high areal coverage. However, indirect estimates of the environmental characteristics are prone to uncertainty. Hence, an improved understanding of the quality of the estimates and the development of methods for dealing with their associated uncertainty are essential to evolve towards accurate PUB. In this study, the impact of the uncertainty associated with the classification of land cover based on multi-temporal SPOT imagery, resulting from the use of the Random Forests classifier, on the predictions of the hydrologic model TOPLATS is investigated through a Monte Carlo simulation. The results show that the predictions of evapotranspiration, runoff and baseflow are hardly affected by the classification uncertainty when area-averaged predictions are intended, implying that uncertainty propagation is only advisable in case a spatial distribution of the predictions is relevant for decision making or is coupled to other spatially distributed models. Based on the resulting uncertainty map, guidelines for additional data collection are formulated in order to reduce the uncertainty for future model applications. Because a Monte Carlo-based uncertainty analysis is computationally very demanding, especially when complex models are involved, we developed a fast indicative uncertainty assessment method that allows for generating proxies of the Monte Carlo-based result in terms of the mean prediction and its associated uncertainty based on a single model evaluation. These proxies are shown to perform well and provide a good indication of the impact of classification uncertainty on the prediction result. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available