4.7 Article

Improving real time flood forecasting using fuzzy inference system

Journal

JOURNAL OF HYDROLOGY
Volume 509, Issue -, Pages 25-41

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2013.11.021

Keywords

Fuzzy inference system; Artificial neural network; Subtractive clustering; Self Organizing Map; Flood forecasting; Lead period

Ask authors/readers for more resources

In order to improve the real time forecasting of foods, this paper proposes a modified Takagi Sugeno (T-S) fuzzy inference system termed as threshold subtractive clustering based Takagi Sugeno (TSC-T-S) fuzzy inference system by introducing the concept of rare and frequent hydrological situations in fuzzy modeling system. The proposed modified fuzzy inference systems provide an option of analyzing and computing cluster centers and membership functions for two different hydrological situations, i.e. low to medium flows (frequent events) as well as high to very high flows (rare events) generally encountered in real time flood forecasting. The methodology has been applied for flood forecasting using the hourly rainfall and river flow data of upper Narmada basin, Central India. The available rainfall-runoff data has been classified in frequent and rare events and suitable TSC-T-S fuzzy model structures have been suggested for better forecasting of river flows. The performance of the model during calibration and validation is evaluated by performance indices such as root mean square error (RMSE), model efficiency and coefficient of correlation (R). In flood forecasting, it is very important to know the performance of flow forecasting model in predicting higher magnitude flows. The above described performance criteria do not express the prediction ability of the model precisely from higher to low flow region. Therefore, a new model performance criterion termed as peak percent threshold statistics (PPTS) is proposed to evaluate the performance of a flood forecasting model. The developed model has been tested for different lead periods using hourly rainfall and discharge data. Further, the proposed fuzzy model results have been compared with artificial neural networks (ANN), ANN models for different classes identified by Self Organizing Map (SOM) and subtractive clustering based Takagi Sugeno fuzzy model (SC-T-S fuzzy model). It has been concluded from the study that the TSC-T-S fuzzy model provide reasonably accurate forecast with sufficient lead-time. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available