4.7 Article

Three-dimensional high resolution fluvio-glacial aquifer analog - Part 2: Geostatistical modeling

Journal

JOURNAL OF HYDROLOGY
Volume 405, Issue 1-2, Pages 10-23

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2011.03.037

Keywords

Multiple-point statistics; Heterogeneity; Hierarchical framework; Aquifer analog; Hydrofacies; Fluvio-glacial

Funding

  1. Swiss National Science foundation [PP002-106557, PP002-124979]
  2. Swiss Confederation's Innovation Promotion Agency [8836.1]

Ask authors/readers for more resources

The heterogeneity of sedimentary structures at the decimeter scale is crucial to the understanding of groundwater flow and transport. In a series of two papers, we provide a detailed analysis of a fluvio-glacial aquifer analog: the Herten site. The geological data along a series of 2D sections in a quarry, the corresponding GPR measurements, and their sedimentological interpretation are described in the companion paper. In this paper, we focus on the three-dimensional reconstruction of the heterogeneity. The resulting numerical model is provided as an electronic supplementary material for further studies. Furthermore, the geostatistical parameters derived from this analysis and the methodology described in the paper could be used in the future for the simulation of similar deposits where less data would be available. To build the 3D model, we propose a hierarchical simulation method which integrates various geostatistical techniques. First, we model the subdivision of the domain into regions corresponding to main sedimentological structures (e.g. a sedimentation event). Within these volumes, we use multiple-point statistics to describe the internal heterogeneity. What is unusual here is that we do not try to use a complex training image for the multiple-point algorithm accounting for all the non-stationarity and complexity, but instead use a simple conceptual model of heterogeneity (ellipsoidal shapes as a training image) and constrain the multiple point simulations within the regions by a detailed interpolation of orientation data derived from the 2D sections. This method produces realistic geological structures. The analysis of the flow and transport properties (hydraulic conductivity and tracer breakthrough curves) of the resulting model shows that it is closer to the properties estimated directly from the 2D geological observations rather than those estimated from a model of heterogeneity based on probability of transitions and not including the modeling of the large-scale structures. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available