4.7 Article

Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

Journal

JOURNAL OF HYDROLOGY
Volume 381, Issue 3-4, Pages 322-332

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2009.12.004

Keywords

Burned watershed; Ash; Infiltration; Overland flow

Funding

  1. Mendenhall Post-Doctoral Fellowship
  2. USGS Landslide Hazards Program Wildfire
  3. Debris Flow Project
  4. National Research Program

Ask authors/readers for more resources

Rainfail-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m(2) north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the Plots Consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h(-1)) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h(-1) for north-facing and from 17.9 to 36.0 mm h(-1) for southfacing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h(-1)) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h(-1)). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available