4.7 Article

The influence of historical and potential future deforestation on the stream flow of the Amazon River - Land surface processes and atmospheric feedbacks

Journal

JOURNAL OF HYDROLOGY
Volume 369, Issue 1-2, Pages 165-174

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2009.02.043

Keywords

Amazon; Discharge; Numerical models; Deforestation

Ask authors/readers for more resources

In this study, results from two sets of numerical simulations are evaluated and presented: one with the land surface model IBIS forced with prescribed climate and another with the fully coupled atmospheric general circulation and land surface model CCM3-IBIS. The results illustrate the influence of historical and potential future deforestation on local evapotranspiration and discharge of the Amazon River system with and without atmospheric feedbacks and clarify a few important points about the impact of deforestation on the Amazon River. In the absence of a continental scale precipitation change, large-scale deforestation can have a significant impact on large river systems and appears to have already done so in the Tocantins and Araguaia Rivers, where discharge has increased 25% with little change in precipitation. However, with extensive deforestation (e.g. >30% of the Amazon basin) atmospheric feedbacks, brought about by differences in the physical structure of the crops and pasture replacing natural vegetation, cause water balance changes of the same order of magnitude as the changes due to local land surface processes, but of opposite sign. Additionally, changes in the water balance caused by atmospheric feedbacks are not limited to those basins where deforestation has occurred but are spread unevenly throughout the entire Amazon by atmospheric circulation. As a result, changes to discharge and aquatic environments with future deforestation of the Amazon will likely be significant and a complex function of how much vegetation has been removed from that particular watershed and how much has been removed from the entire Amazon Basin. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available