4.4 Article

Drought Analysis under Climate Change Using Copula

Journal

JOURNAL OF HYDROLOGIC ENGINEERING
Volume 18, Issue 7, Pages 746-759

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)HE.1943-5584.0000532

Keywords

Droughts; Climate change; Drought; Climate change; Copula

Ask authors/readers for more resources

The joint behavior of drought characteristics under climate change is evaluated using the copula method, which has recently attained popularity in the analysis of complex hydrologic systems with correlated variables. Trivariate copulas are applied, in this study, to analyze the major drought variables, including duration, severity, and intensity, in Oregon's Upper Klamath River Basin. Among the variables, results show that duration severity exhibits the strongest correlation, whereas duration intensity exhibits the least correlation. The impact of climate change on future droughts is evaluated using five general circulation models (GCMs) under one emission scenario. Despite more intense extreme events that are expected to occur in most parts of the globe in the future, the results of this study show that the Upper Klamath River Basin in the Pacific Northwest will experience less intense droughts affected by climate change. Compared with historical events, an overall decrease in drought duration and severity is estimated for this study area in the time period of 2020-2090 with maximum drought duration shown to decline from 8 to 5months. Among the five GCMs employed in this study, GFDL-CM2.1 and CSIRO-MK3.0 are identified as the wettest and driest projections, respectively. High uncertainty associated with GCM products is demonstrated in the analysis of return period by means of bivariate copulas. However, all projections result in larger return periods (i.e.,less frequent droughts) compared with historical droughts during the reference period. (C) 2013 American Society of Civil Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available