4.5 Article

Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes

Journal

JOURNAL OF HYDROINFORMATICS
Volume 16, Issue 3, Pages 671-689

Publisher

IWA PUBLISHING
DOI: 10.2166/hydro.2013.042

Keywords

artificial neural networks; climate regime; forecasting; streamflow; support vector regression; times series analysis

Funding

  1. Tim Casgrain Water Resources Management Fellowship at McGill University

Ask authors/readers for more resources

Considering the popularity of using data-driven non-linear methods for forecasting streamflow, there has been no exploration of how well such models perform in climate regimes with differing hydrological characteristics, nor has the performance of these models, coupled with wavelet transforms, been compared for lead times of less than 1 month. This study compares the use of four different models, namely artificial neural networks (ANNs), support vector regression (SVR), wavelet-ANN, and wavelet-SVR in a Mediterranean, Oceanic, and Hemiboreal watershed. Model performance was tested for 1, 2 and 3 day forecasting lead times, measured by fractional standard error, the coefficient of determination, Nash-Sutcliffe model efficiency, multiplicative bias, probability of detection and false alarm rate. SVR based models performed best overall, but no one model outperformed the others in more than one watershed, suggesting that some models may be more suitable for certain types of data. Overall model performance varied greatly between climate regimes, suggesting that higher persistence and slower hydrological processes (i.e. snowmelt, glacial runoff, and subsurface flow) support reliable forecasting using daily and multi-day lead times.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available