4.2 Article

Turbulence structures in flow over two-dimensional dunes

Journal

JOURNAL OF HYDRAULIC ENGINEERING
Volume 134, Issue 1, Pages 42-55

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9429(2008)134:1(42)

Keywords

-

Ask authors/readers for more resources

This paper presents a large eddy simulation (LES) of turbulent open channel flow over two-dimensional periodic dunes. The Reynolds number R based on the bulk velocity U(bulk) and the maximum flow depth h, is approximately 25,000. The instantaneous flow field is investigated with special emphasis on the occurrence of coherent structures. Instantaneous vortices were visualized and it is shown that separated vortices are formed downstream of the dune crest due to Kelvin-Helmholtz instabilities. Near the point of reattachment the so-called kolk-boil vortex evolves in form of a hairpin vortex. Also present are previously separated vortices, which are convected along the stoss side of the downstream dune and elevated toward the water surface. The existence of near wall streaks which reform shortly after reattachment is also shown. The spacing between two low-speed streaks is very similar to that observed previously over smooth and rough walls. For validation, profiles of the time-averaged velocities, streamwise, and wall-normal turbulent intensities and the Reynolds shear stress calculated by the LES are presented and compared with available laser Doppler velocimetry measurements and overall good agreement is found.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available