4.8 Article

Implementation of a firebed cooling device and its influence on emissions and combustion parameters at a residential wood pellet boiler

Journal

APPLIED ENERGY
Volume 159, Issue -, Pages 310-316

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.08.133

Keywords

Biomass combustion; Pellet boiler; Gaseous emissions; Particle emissions; Firebed temperature

Funding

  1. Deutsche Bundesstiftung Umwelt, Osnabrueck, Germany for granting the COFIT-Project [AZ 29738]

Ask authors/readers for more resources

This study investigates the general concept of reduced firebed temperatures in residential wood pellet boilers. Residential wood pellet boiler development is more and more concerned with inorganic aerosols characterized by a temperature-dependent release from the firebed. Hence, different concepts are applied aiming to reduce firebed temperatures. Unfortunately, these concepts influence not only firebed temperatures, but also other important parameters like air flow rates which may cause unwanted side effects with respect to combustion quality or efficiency. Thus, a new approach was developed solely affecting firebed temperature by implementing a water-based firebed cooling in a 12 kW underfeed pellet boiler. The effectiveness of the cooling was monitored by comprehensive temperature measurement in the firebed. The cooling capacity ranged from 0.4 kW to 0.5 kW resulted in a significant decrease of firebed temperatures. Gaseous emissions remain stable showing no significant changes in major components (O-2, CO2, NOx). Furthermore, CO emissions were even reduced significantly by the activated cooling, which was supposedly caused by a stabilized devolatilization due to the firebed cooling. Moreover, the temperature-dependent release of aerosol forming elements was influenced at activated firebed cooling, which is proved by a decrease of 17 wt% of dust (Total Suspended Particles; TSP). At the same time the gaseous emissions of HCl increase, supposedly by a reduced potassium release from the firebed to the gas phase and a subsequently different particle formation. The general concept of reduced firebed temperatures proved to be successful decreasing overall aerosol emissions without impacting combustion quality. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available