4.3 Review

Physiology of flowering and dormancy regulation in annual- and biennial-fruiting red raspberry (Rubus idaeus L.) - a review

Journal

JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY
Volume 86, Issue 5, Pages 433-442

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/14620316.2011.11512785

Keywords

-

Categories

Ask authors/readers for more resources

Recent research on how the structure and physiological development of red raspberry (Rubus idaeus L.) plants are controlled by genotype and the climatic environment is reviewed. Some older work, especially on plant structure relations, is also included. Physiological differences between annual- and biennial-fruiting plant types are highlighted. One major difference is the different requirements for flower formation. While biennial-fruiting cultivars have an absolute low temperature (<= approx. 15 degrees C) requirement for floral initiation, annual-fruiting cultivars readily initiate floral primordia at temperatures as high as a constant 30 degrees C. Also, while biennial-fruiting cultivars are facultative short-day plants with a critical photoperiod of 15 h at intermediate temperatures, flowering is promoted by long photoperiods in at least some annual-fruiting cultivars. However, the essential difference that determines whether the shoot life-cycle becomes annual or biennial is that, in biennial-fruiting genotypes, floral initiation is linked to the induction of bud dormancy; whereas, in annual-fruiting cultivars, floral initiation is followed by direct flower development. Although this is genetically determined, it is a plastic trait that is subject to modification by the environment. Thus, at low temperatures and under short photoperiods, the majority of initiated buds also enter dormancy in annual-fruiting cultivars, with tip-flowering as a result. Practical applications are discussed, and it is concluded that our present physiological knowledge-base provides excellent opportunities for the manipulation of raspberry crops for out-of-season production and high yields. It also provides a firm platform for further exploration of the underlying molecular genetics of plant structures and response mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available