4.2 Article

Matrix mineralization as a trigger for osteocyte maturation

Journal

JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY
Volume 56, Issue 6, Pages 561-567

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1369/jhc.2008.950527

Keywords

mineralization; bisphosphonate; osteocyte; bone matrix; sclerostin/SOST

Categories

Ask authors/readers for more resources

The morphology of the osteocyte changes during the cell's lifetime. Shortly after becoming buried in the matrix, an osteocyte is plump with a rich rough endoplasmic reticulum and a well-developed Golgi complex. This immature osteocyte reduces its number of organelles to become a mature osteocyte when it comes to reside deeper in the bone matrix. We hypothesized that mineralization of the surrounding matrix is the trigger for osteocyte maturation. To verify this, we prevented mineralization of newly formed matrix by administration of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) and then examined the morphological changes in the osteocytes in rats. In the HEBP group, matrix mineralization was disturbed, but matrix formation was not affected. The osteocytes found in the unmineralized matrix were immature. Mature osteocytes were seen in the corresponding mineralized matrix in the control group. The immature osteocytes in the unmineralized matrix failed to show immunoreactivity with anti-sclerostin antibody, whereas mature osteocytes in the mineralized matrix showed immunoreactivity in both control and HEBP groups. These findings suggest that mineralization of the matrix surrounding the osteocyte is the trigger for cytodifferentiation from a plump immature form to a mature osteocyte. The osteocyte appears to start secreting sclerostin only after it matures in the mineralized bone matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available