4.4 Article

An experimental and computational heat transfer study of pulsating jets

Journal

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.2891158

Keywords

synthetic jets; electronics cooling; thermal management; impingement; jet design

Ask authors/readers for more resources

Synthetic jets are meso or microscale fluidic devices, which operate on the zero-net-mass-flux principle. However they impart a positive net momentum flux to the external environment and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. The rate of heat removal from the thermal source is expected to depend on the location, orientation, strength, and shape of the jet. In the current study, we investigate the impact of jet location and orientation on the cooling performance via time-dependent numerical simulations and verify the same with experimental results. We firstly present the experimental study along with the findings. Secondly, we present the numerical models/results, which are compared with the experiments to gain the confidence in the computational methodology. Finally, a sensitivity evaluation has been performed by altering the position and alignment of the jet with respect to the heated surface. Two prime orientations of the jet have been considered, namely, perpendicular and cross jet impingement on the heater. It is found that if jet is placed at an optimum location in either impingement or cross flow position, it can provide similar enhancements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available