4.4 Article

An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film

Journal

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.2891159

Keywords

heat transfer; laser; melting; solidification; microscale

Ask authors/readers for more resources

An interfacial tracking method was developed to model rapid melting and resolidification of a freestanding metal film subject to an ultrashort laser pulse. The laser energy was deposited to the electrons near thin film surface, and subsequently diffused into a deeper part of the electron gas and transferred to the lattice. The energy equations for the electron and lattice were coupled through an electron-lattice coupling factor Melting and resolidification were modeled by considering the interfacial energy balance and nucleation dynamics. An iterative solution procedure was employed to determine the elevated melting temperature and depressed solidification temperature in the ultrafast phase-change processes. The predicted surface lattice temperature, interfacial location, interfacial temperature, and interfacial velocity were compared with those obtained by an explicit enthalpy model. The effects of the electron thermal conductivity models, ballistic range, and laser fluence on the melting and resolidification were also investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available