4.6 Article

Tomographic phase microscopy with 180 degrees rotation of live cells in suspension by holographic optical tweezers

Journal

OPTICS LETTERS
Volume 40, Issue 8, Pages 1881-1884

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.40.001881

Keywords

-

Categories

Funding

  1. FP7 Marie Curie Career Integration Grant (CIG) [303559]

Ask authors/readers for more resources

We present a new tomographic phase microscopy (TPM) approach that allows capturing the three-dimensional refractive index structure of single cells in suspension without labeling, using 180 degrees rotation of the cells. This is obtained by integrating an external off-axis interferometer for wide-field wave front acquisition with holographic optical tweezers (HOTs) for trapping and micro-rotation of the suspended cells. In contrast to existing TPM approaches for cell imaging, our approach does not require anchoring the sample to a rotating stage, nor is it limited in angular range as is the illumination rotation approach. Thus, it allows noninvasive TPM of suspended live cells in a wide angular range. The proposed technique is experimentally demonstrated by capturing the three-dimensional refractive index map of yeast cells, while collecting interferometric projections at an angular range of 180 degrees with 5 degrees steps. The interferometric projections are processed by both the filtered back-projection method and the diffraction theory method. The experimental system is integrated with a spinning disk confocal fluorescent microscope for validation of the label-free TPM results. (C) 2015 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available