4.6 Article

Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber

Journal

OPTICS LETTERS
Volume 40, Issue 15, Pages 3679-3682

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.40.003679

Keywords

-

Categories

Ask authors/readers for more resources

Second-order nonlinearity is induced inside a Xe-filled hollow-core photonic crystal fiber (PCF) by applying an external dc field. The system uniquely allows the linear optical properties to be adjusted by changing the gas pressure, allowing for precise phase matching between the LP01 mode at 1064 nm and the LP02 mode at 532 nm. The dependence of the second-harmonic conversion efficiency on the gas pressure, launched pulse energy, and applied field agrees well with theory. The ultra-broadband guidance offered by anti-resonant reflecting hollow-core PCFs, for example, a kagome PCF, offers many possibilities for generating light in traditionally difficult-to-access regions of the electromagnetic spectrum, such as the ultraviolet or the terahertz windows. The system can also be used for non-invasive measurements of the transmission loss in a hollow-core PCF over a broad spectrum, including the deep and vacuum UV regions. (C) 2015 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available