4.7 Article

Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 360, Issue -, Pages 6-16

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2018.07.084

Keywords

ZnFe2O4; Nanofibers; Electrospinning; H2S; Gas sensors

Funding

  1. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [103.02-2017.25]

Ask authors/readers for more resources

ZnFe2O4 nanofiber gas sensors are cost-effectively fabricated by direct electrospinning on microelectrode chip with Pt interdigitated electrodes and subsequent calcination under different conditions to maximize their response to H2S gas. The synthesized nanofibers of approximately 30-100 nm in diameter show typical spider-net-like morphology of the electrospun nanofibers. The ZnFe2O4 nanofibers comprise many 10-25 nm nanograins, which results in multi-porous structures. Moreover, the nanofibers exhibit the single phase of cubic-spinel-structure ZnFe2O4. The density, crystallinity and grain size of ZnFe2O4 nanofiber that strongly affect gas-sensing properties can be optimized by controlling electrospun time, annealing temperature, annealing time and heating rate. Under optimal conditions, the ZnFe2O4 nanofiber sensors exhibit high sensitivity and selectivity to H2S at sub-ppm levels. Excellent gas-sensing performances are attributed to effects of multi-porous structure, nanograin size and crystallinity, which is explained by the sensing mechanisms of ZnFe2O4 nanofiber sensors to H2S gas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available