4.7 Article

Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 267, Issue -, Pages 62-70

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2013.12.027

Keywords

Biochar; Dissolved organic matter; As(III) oxidation; Cr(VI) reduction

Funding

  1. Jiangsu Provincial Innovation Program
  2. T-STAR

Ask authors/readers for more resources

This study evaluated the impact of DOM from two biochars (sugar beet tailing and Brazilian pepper) on Cr(VI) reduction and As(III) oxidation in both ice and aqueous phases with a soil DOM as control. Increasing DOM concentration from 3 to 300 mg C L-1 enhanced Cr(VI) reduction from 20% to 100% and As(III) oxidation from 6.2% to 25%; however, Cr(VI) reduction decreased from 80-86% to negligible while As(III) oxidation increased from negligible to 18-19% with increasing pH from 2 to 10. Electron spin resonance study suggested semiquinone radicals in DOM were involved in As(III) oxidation while Fourier transform infrared analysis suggested that carboxylic groups in DOM participated in both Cr(VI) reduction and As(III) oxidation. During Cr(VI) reduction, part of DOM (similar to 10%) was oxidized to CO2. The enhanced conversion of Cr(VI) and As(III) in the ice phase was due to the freeze concentration effect with elevated concentrations of electron donors and electron acceptors in the grain boundary. Though DOM enhanced both Cr(VI) reduction and As(III)oxidation, Cr(VI) reduction coupled with As(III) oxidation occurred in absence of DOM. The role of DOM, Cr(VI) and/or As(III) in Cr and As transformation may provide new insights into their speciation and toxicity in cold regions. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available