4.7 Article

Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by LC-UV-MS/MS

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 244, Issue -, Pages 654-661

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2012.10.059

Keywords

Sulfonamides; Photodegradation; Biodegradation; Transformation products; Aquatic environment

Funding

  1. Ministry of Higher Education and Scientific Research of the Arab Republic of Egypt (MHESR)
  2. German Academic Exchange Service (DAAD)

Ask authors/readers for more resources

Sulfonamides are one of the most frequently used antibiotics worldwide. Therefore, mitigation processes such as abiotic or biotic degradation are of interest. Photodegradation and biodegradation are the potentially significant removal mechanisms for pharmaceuticals in aquatic environments. The photolysis of sulfamethoxypyridazine (SMP) using a medium pressure Hg-lamp was evaluated in three different media: Millipore water pH 6.1 (MW), effluent from sewage treatment plant pH 7.6 (STP), and buffered demineralized water pH 7.4 (BDW). Identification of transformation products (TPs) was performed by LC-UV-MS/MS. The biodegradation of SMP using two tests from the OECD series was studied: Closed Bottle test (OECD 301 D), and Manometric Respirometry test (OECD 301 F). In biodegradation tests, it was found that SMP was not readily biodegradable so it may pose a risk to the environment. The results showed that SMP was removed completely within 128 min of irradiation in the three media, and the degradation rate was different for each investigated type of water. However, dissolved organic carbon (DOC) was not removed in BDW and only little DOC removal was observed in MW and STP, thus indicating the formation of TPs. Analysis by LC-UV-MS/MS revealed new TPs formed. The hydroxylation of SMP represents the main photodegradation pathway. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available