4.7 Article

Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 258, Issue -, Pages 116-123

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2013.04.045

Keywords

Electrospinning; Mixed oxide; Nanocomposites; Adsorption; Heavy metal ions

Funding

  1. DST Govt. of India

Ask authors/readers for more resources

In this study, Iron oxide-alumina mixed nanocomposite fiber was prepared by electrospinning method and its performance was evaluated as a heavy metal ion adsorbent. Here boehmite nanoparticle was synthesized by sal-gel method and was impregnated in PVP-iron acetylacetonate solution in a ratio of 1:1:2. These boehmite impregnated polymer solution was electrospun to form nanocomposite polymer fiber. The electrospun nanofiber was sintered at 1000 degrees C for converting it to pure oxide form for further application as adsorbent. Iron oxide-alumina mixed nanocomposite fiber was characterized by UV-vis-DRS, IR, SEM-EDX, TEM, BET and TGA-DTA analytical techniques. Batch adsorption experiments were carried out to study the sorption behavior of Cu2+, Pb2+, Ni2+ and Hg2+ ions as a function of initial concentration, contact time and pH. The removal percentage was in the order of Cu2+ < Pb2+ < Ni2+ < Hg2+. The maximum sorption capacities by applying the Langmuir equation were found to be 4.98 mg/g for Cu2+, 32.36 mg/g for Ni2+, 23.75 mg/g for Pb2+ and 63.69 mg/g for Hg2+ ions. The regeneration studies of mixed nanocomposite adsorbents were also reported here. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available