4.7 Article

A preliminary investigation of unintentional POP emissions from thermal wire reclamation at industrial scrap metal recycling parks in China

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 215, Issue -, Pages 259-265

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2012.02.062

Keywords

Unintentional POPs; Thermal wire reclamation; Emission source; Scrap metal

Funding

  1. National 973 program [2009CB421606]
  2. National Natural Science Foundation of China [21037003, 20921063, 21107123]

Ask authors/readers for more resources

Thermal wire reclamation is considered to be a potential source of unintentional persistent organic pollutants (unintentional POPs). In this study, unintentional POP concentrations, including PCDD/Fs, dioxin like PCBs (dl-PCBs), polychlorinated naphthalenes (PCNs), hexachlorobenzene (HxCBz) and pentachlorobenzene (PeCBz), were quantified in flue gas and residual ash emissions from thermal wire reclamation at scrap metal dismantling parks in Zhejiang Province, China. The total average TEQ emissions of the investigated unintentional POPs from flue gas and residual ash in two typical scrap metal recycling plants ranged from 13.1 to 48.3 ng TEQ N m(-3) and 0.08 to 2.8 ng TEQ g(-1), respectively. The dominant PCDD/F congeners were OCDD, 1,2,3,4,6,7,8-HpCDD, OCDF and 1,2,3,4,6,7,8-HpCDF, while PCB-126 and PCB-169 were the main contributors to the toxicity of the dl-PCBs. There were clear differences in the distribution dl-PCBs congeners contributing to the TEQ concentrations in the flue gas samples from the two plants. The PCN TEQs were dominated by PCN-66/67 and PCN-73. Although thermal wire reclamation in incinerators has been proposed as an alternative to open burning, there are still considerable environmental risks associated with regulated incinerators, and unintentional POP emissions from thermal wire reclamation sites need to be controlled by local government agencies. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available