4.7 Article

Biosorption of heavy metals from aqueous solutions by chemically modified orange peel

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 185, Issue 1, Pages 49-54

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2010.08.114

Keywords

Modified orange peel; Heavy metal ions; Biosorption; Isotherms; Kinetics; Thermodynamics

Funding

  1. National Natural Science Foundation of China [50774100]

Ask authors/readers for more resources

Equilibrium, thermodynamic and kinetic studies were carried out for the biosorption of Pb2+, Cd2+ and Ni2+ ions from aqueous solution using the grafted copolymerization-modified orange peel (OPAA). Langmuir and Freundlich isotherm models were applied to describe the biosorption of the metal ions onto OPAA. The influences of pH and contact time of solution on the biosorption were studied. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. According to the Langmuir equation, the maximum uptake capacities for Pb2+, Cd2+ and Ni2+ ions were 476 1,293.3 and 162.6 mg g(-1), respectively. Compared with the unmodified orange peel, the biosorption capacity of the modified biomass increased 4.2-, 4.6- and 16.5-fold for Pb2+, Cd2+ and Ni2+, respectively. The kinetics for Pb2+, Cd2+ and Ni2+ ions biosorption followed the pseudo-second-order kinetics. The free energy changes (Delta G degrees) for Pb2+, Cd2+ and Ni2+ ions biosorption process were found to be -3.77, -4.99 and -4.22 kJ mol(-1), respectively, which indicates the spontaneous nature of biosorption process. FTIR demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions. Desorption of Pb2+, Cd2+ and Ni2+ ions from the biosorbent was effectively achieved in a 0.05 mol L-1 HCl solution. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available