4.7 Article

Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 186, Issue 1, Pages 150-159

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2010.10.098

Keywords

Polypyrrole; Magnetic nanocomposite; Adsorption; Fluoride; Kinetics; Equilibrium

Funding

  1. National Research Fund (NRF) of South Africa

Ask authors/readers for more resources

Polypyrrole (PPy)/Fe3O4 magnetic nanocomposite as a novel adsorbent was prepared via in-situ polymerization of pyrrole (Py) monomer using FeCl3 oxidant in aqueous medium in which Fe3O4 nanoparticles were suspended. The adsorbent was characterized by Attenuated Total Reflectance Fourier transform infrared spectroscope (ATR-FTIR), Brunauer-Emmet-Teller (BET) method, field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscope (HR-TEM). X-ray photoelectron spectroscope (XPS) and X-ray diffraction (XRD). Magnetic property of the adsorbent was measured by electron spin resonance (ESR). Subsequently, the ability of the adsorbent to remove fluoride ions from aqueous solution was demonstrated in a batch sorption mode. Results reveal that the adsorption is rapid and that the adsorbent has high affinity for fluoride, which depends on temperature, solution pH and adsorbent dose. From equilibrium modelling, the equilibrium data is well described by Freundlich and Langmuir-Freundlich isotherms while the adsorption kinetics is described by the pseudo-second-order model. Thermodynamic parameters confirm the spontaneity and endothermic nature of the fluoride adsorption. Meanwhile, the fluoride adsorption proceeds by an ion exchange mechanism. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available