4.7 Article

Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 192, Issue 2, Pages 476-484

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2011.05.046

Keywords

Magnetic nanoparticle; Ionic liquid; Adsorption; Azo dye

Funding

  1. Shiraz University Research Council

Ask authors/readers for more resources

The nanoparticles of Fe3O4 as well as the binary nanoparticles of ionic liquid and Fe3O4 (IL-Fe3O4) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM. DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe3O4 nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L-1 were used. The maximum adsorption capacity of IL-Fe3O4 was 166.67 and 49.26 mg g(-1) for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg(-1) for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe3O4 by using a mixed NaCl-acetone solution and adsorbent was reusable. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available