4.7 Article

Understanding removal of phosphate or arsenate onto water treatment residual solids

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 186, Issue 2-3, Pages 1916-1923

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2010.12.085

Keywords

Adsorption; Arsenate treatment; Phosphate treatment; Water treatment residual solids

Funding

  1. Canadian Water Network
  2. Natural Sciences and Engineering Research Council of Canada
  3. Killam Trusts

Ask authors/readers for more resources

Chemical and physical characterization methods were used to analyze ferric, alum, and lime water treatment residual solids (WTRSs) in order to describe why phosphate or arsenate adsorption occurred on the WTRSs, and why ferric WTRSs were the stronger adsorbent for both phosphate and arsenate. In total, five WTRSs, two ferric, two alum, and one lime, were analyzed. Elemental analysis of the WTRSs showed lime residuals contained the greatest molar amount of the primary element (7.04 mol Ca/kg solid), followed by the ferric residuals (4.86-4.96 mol Fe/kg solid) whereas alum residuals contained the least amount of primary element as compared to the ferric or alum residual solids (3.62-4.67 mol Al/kg solid). Mercury porosimetry identified more small pores (<0.006 mu m) in a ferric WTRSs when compared to an alum WTRSs, indicating that a more detailed pore structure allowing for intraparticle phosphate or arsenate diffusion might be present in the ferric solid. Similarly. SEM images at 1000 times magnification showed a porous surface in both ferric WTRSs, whereas the alum WTRSs showed a smooth surface at the same magnification. Several general equations to describe phosphate or arsenate adsorption on WTRSs were provided. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available