4.7 Article

Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 181, Issue 1-3, Pages 1039-1050

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2010.05.119

Keywords

Fe3O4 hollow nanospheres; Adsorption; Neutral red; Color removal; Adsorption isotherms

Funding

  1. National Natural Science Foundation of China [20676137, 20490200, 20876158]
  2. National High Technology Research and Development Program of China [2007AA03Z315]

Ask authors/readers for more resources

Fe3O4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe3O4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 degrees C and pH 6, was found to be 105 mg g(-1). Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe3O4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available