4.7 Article

Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 163, Issue 1, Pages 174-179

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2008.06.075

Keywords

Adsorption; Heavy metal ions; Magnetic nano-adsorbent; Amino-functionalization

Funding

  1. National Science Council of the Republic of China [NSC94-2214-E006-006]

Ask authors/readers for more resources

A novel magnetic nano-adsorbent has been developed by the covalent binding of polyacrylic acid (PAA) on the surface of Fe3O4 nanoparticles and the followed amino-functionalization using diethylenetriamine (DETA) via carbodiimide activation. Transmission electron microscopy image showed that the aminofunctionalized Fe3O4 nanoparticles were quite fine with a mean diameterof 11.2 +/- 2.8 nm. X-ray diffraction analysis indicated that the binding process did not result in the phase change of Fe3O4. Magnetic measurement revealed they were nearly superparamagnetic with a saturation magnetization of 63.2 emu/g Fe3O4. The binding of DETA on the PAA-coated Fe3O4 narroparticles was demonstrated by the analyses of Fourier transform infrared (FTIR) spectroscopy and zeta potential. After amino-functionalization, the isoelectric point of PAA-coated Fe3O4 nanoparticles shifted from 2.64 to 4.59. The amino-functionalized magnetic nano-adsorbent shows a quite good capability for the rapid and efficient adsorption of metal cations and anions from aqueous solutions via the chelation or ion exchange mechanisms. The studies on the adsorption of Cu(II) and Cr(VI) ions revealed that both obeyed the Langmuir isotherm equation. The maximum adsorption capacities and Langmuir adsorption constants were 12.43 mg/g and 0.06 L/mg for Cu(II) ions and 11.24 mg/g and 0.0165 L/mg for Cr(VI) ions, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available