4.7 Article

Electrochemical removal of indium ions from aqueous solution using iron electrodes

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 172, Issue 1, Pages 46-53

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2009.06.119

Keywords

Electrocoagulation; Indium ion removal; Adsorption isotherms; Specific energy consumption; Iron electrode

Funding

  1. National Science Council, Taiwan, ROC [NSC97-2622-E-241-003-CC3]

Ask authors/readers for more resources

The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm(2), 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available