4.7 Article

Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 157, Issue 2-3, Pages 620-627

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2008.01.030

Keywords

coir pith; mercury(II) removal; graft copolymerization; adsorption isotherm; desorption

Ask authors/readers for more resources

A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly (hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R-2=0.99; chi(2) = 1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available