4.6 Article

Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization

Journal

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
Volume 36, Issue 2, Pages 375-389

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.58436

Keywords

-

Ask authors/readers for more resources

Autonomous rendezvous and proximity operations of spacecraft require the capability of onboard planning and executing highly constrained trajectories without ground support. This paper presents a general and rigorous methodology and algorithmic procedure toward this goal with a target vehicle that can be in an arbitrary orbit. The rendezvous and proximity operations problem is formulated as a nonlinear optimal control problem, subject to various state and control inequality constraints and equality constraints on interior points and terminal conditions. By a lossless relaxation technique, a relaxed problem is formed, the solution of which is proven to be equivalent to that of the original rendezvous and proximity operations problem. The relaxed problem is then solved by a novel successive solution process, in which the solutions of a sequence of constrained subproblems with linear, time-varying dynamics are sought. After discretization, each of these problems becomes a second-order cone programming problem. Their solutions, if they exist, are guaranteed to be found by a primal-dual interior-point algorithm. The efficacy of the proposed methodology is strongly supported by numerical experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available