4.3 Article

A life cycle approach to modeling sea lamprey population dynamics in the Lake Champlain basin to evaluate alternative control strategies

Journal

JOURNAL OF GREAT LAKES RESEARCH
Volume 38, Issue -, Pages 101-114

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jglr.2011.11.002

Keywords

Sea lamprey; Population dynamics; Lake Champlain; Density dependence; Fishery management; Matrix modeling

Funding

  1. Lake Champlain Sea Grant
  2. Lake Champlain Basin Program

Ask authors/readers for more resources

Sea lamprey (Petromyzon marinus) is a nuisance species in the Laurentian Great Lakes and Lake Champlain that has devastated native fish populations and hampered sport fisheries development. We developed a modified stage-based life history matrix for sea lamprey to analyze the effects of various management efforts to suppress sea lamprey population growth in Lake Champlain. These efforts targeted different life stages of the sea lamprey life cycle. A beta distribution was used to distribute stochastic larval populations among twenty sea lamprey-bearing tributaries and five deltas to Lake Champlain, from which sea lamprey that survive through larval metamorphosis were then pooled into a lake-wide parasitic-phase population. Parasiticphase survival to the spawning stage was evaluated based on proximity to the natal tributary and on the size of the resident larval population in each tributary. Potential control strategies were modeled at egg to emergence, larval, and spawning stages to reduce vital rates at each stage, with the goal of suppressing parasiticphase production. Simulations indicate that control of the larval stage was essential to achieving this goal, and with supplemental effort to reduce the vital rates at early life stages and at the spawning stage, the parasitic-phase population can be further suppressed. Sensitivity simulations indicate that the life history model was sensitive to egg deposition rate, abundance of parasitic-phase sea lamprey from unknown, uncontrolled sources, and the method in which parasitic-phase sea lamprey select tributaries for spawning. Results from this model can guide management agencies to optimize future management programs. (C) 2011 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available