4.3 Article

A hydrodynamic approach to modeling phosphorus distribution in Lake Erie

Journal

JOURNAL OF GREAT LAKES RESEARCH
Volume 35, Issue 1, Pages 50-60

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jglr.2008.09.003

Keywords

Lake Erie; Phosphorus; Modeling

Ask authors/readers for more resources

The purpose of this paper is to show how a high-resolution numerical circulation model of Lake Erie can be used to gain insight into the spatial and temporal variability of phosphorus (and by inference, other components of the lower food web) in the lake. The computer model simulates the detailed spatial and temporal distribution of total phosphorus in Lake Erie during 1994 based on tributary and atmospheric loading, hydrodynamic transport, and basin-dependent net apparent settling. Phosphorus loads to the lake in 1994 were relatively low, about 30% lower than the average loads for the past 30 years. Results of the model simulations are presented in terms of maps of 1) annually averaged phosphorus concentration, 2) temporal variability of phosphorus concentration, and 3) relative contribution of annual phosphorus load from specific tributaries. Model results illustrate that significant nearshore to offshore gradients occur in the vicinity of tributary mouths and their along-shore plumes. For instance, the annually averaged phosphorus concentration can vary by a factor of 10 from one end of the lake to the other. Phosphorus levels at some points in the lake can change by a factor of 10 in a matter of hours. Variance in phosphorus levels is up to 100 times higher near major tributary mouths than it is in offshore waters. The model is also used to estimate the spatial distribution of phosphorus variability and to produce maps of the relative contribution of individual tributaries to the annual average concentration at each point in the lake. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available