4.6 Article

Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range

Journal

OPTICS EXPRESS
Volume 23, Issue 20, Pages 25988-25995

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.23.025988

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [61275097, 61307106, 61575001, 61327812]

Ask authors/readers for more resources

A novel time-gated digital optical frequency domain reflectometry (TGD-OFDR) technique with high spatial resolution over long measurement range is proposed and experimentally demonstrated. To solve the contradictory between the tuning rate of lightwave frequency, which determines the spatial resolution, and the measurable distance range in traditional OFDR, our proposed scheme sweeps the frequency of probe beam only within a time window, while the local reference remains a frequency-stable continuous lightwave. The frequency-to-distance mapping is digitally realized with equivalent references in data domain. In demonstrational experiments, a 1.6-m spatial resolution is obtained over an entire 110-km long fiber link, proving that the phase noises of the laser source as well as environmental perturbations are well suppressed. Meanwhile, the dynamic range was 26 dB with an average of only 373 measurements. The proposed reflectometry provides a simple-structure and high-performance solution for the applications where both high spatial resolution and long distance range are required. (C)2015 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available