4.4 Article

Hamilton-type principles applied to ice-sheet dynamics: new approximations for large-scale ice-sheet flow

Journal

JOURNAL OF GLACIOLOGY
Volume 56, Issue 197, Pages 497-513

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.3189/002214310792447761

Keywords

-

Funding

  1. US National Science Foundation Office for Polar Programs [NSF-0739769]
  2. NASA [NNX08AN59G]

Ask authors/readers for more resources

Ice-sheet modelers tend to be more familiar with the Newtonian, vectorial formulation of continuum mechanics, in which the motion of an ice sheet or glacier is determined by the balance of stresses acting on the ice at any instant in time. However, there is also an equivalent and alternative formulation of mechanics where the equations of motion are instead found by invoking a variational principle, often called Hamilton's principle. In this study, we show that a slightly modified version of Hamilton's principle can be used to derive the equations of ice-sheet motion. Moreover, Hamilton's principle provides a pathway in which analytic and numeric approximations can be made directly to the variational principle using the Rayleigh-Ritz method. To this end, we use the Rayleigh-Ritz method to derive a variational principle describing the large-scale flow of ice sheets that stitches the shallow-ice and shallow-shelf approximations together. Numerical examples show that the approximation yields realistic steady-state ice-sheet configurations for a variety of basal tractions and sliding laws. Small parameter expansions show that the approximation reduces to the appropriate asymptotic limits of shallow ice and shallow stream for large and small values of the basal traction number.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available