4.3 Article

Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012JA017650

Keywords

-

Funding

  1. MEXT Grant-in-Aid for Scientific Research (B) in Japan (KAKENHI) [23340144, 23340149]
  2. Grants-in-Aid for Scientific Research [23340149, 24740336, 23340144] Funding Source: KAKEN

Ask authors/readers for more resources

This paper compares results from a whole atmosphere-ionosphere coupled model, GAIA, with the COSMIC and TIMED/SABER observations during the 2008/2009 northern winter season. The GAIA model has assimilated meteorological reanalysis data by a nudging method. The comparison shows general agreement in the major features from the stratosphere to the ionosphere including the growth and decay of the major stratospheric sudden warming (SSW) event in 2009. During this period, a pronounced semidiurnal variation in the F region electron density and its local-time phase shift similar to the previous observations are reproduced by the model and COSMIC observation. The model suggests that the electron density variation is caused by an enhanced semidiurnal variation in the E x B drift, which is probably related to an amplified semidiurnal migrating tide (SW2) in the lower thermosphere. The model and TIMED/SABER observation show that the SW2 tide amplifies at low latitudes from the stratosphere to the thermosphere as well as the phase variation. Possible mechanisms for the SW2 variability in the low latitude stratosphere could be the change of its propagation condition, especially the (2, 2) mode, due to changing zonal background wind and meridional temperature gradient, and/or an enhancement of its source due to redistribution of stratospheric ozone. Present results also show a prominent long-term variation of the terdiurnal migrating component (TW3) in the ionosphere and atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available