4.3 Article

Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JG001862

Keywords

-

Funding

  1. Fluxnet - Canada
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)
  4. BIOCAP Canada
  5. CCP
  6. National Science Foundation (NSF) [DEB-0845166]
  7. Division Of Environmental Biology
  8. Direct For Biological Sciences [0845166] Funding Source: National Science Foundation

Ask authors/readers for more resources

Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2 fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor, sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available