4.3 Article

ULF wave derived radiation belt radial diffusion coefficients

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JA017463

Keywords

-

Funding

  1. Canadian NSERC
  2. Canadian Space Agency
  3. NASA [NNX08AM36G, NNX10AL02G]
  4. NASA [130262, NNX10AL02G, 98398, NNX08AM36G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Waves in the ultra-low-frequency (ULF) band have frequencies which can be drift resonant with electrons in the outer radiation belt, suggesting the potential for strong interactions and enhanced radial diffusion. Previous radial diffusion coefficient models such as those presented by Brautigam and Albert (2000) have typically used semiempirical representations for both the ULF wave's electric and magnetic field power spectral densities (PSD) in space in the magnetic equatorial plane. In contrast, here we use ground-and space-based observations of ULF wave power to characterize the electric and magnetic diffusion coefficients. Expressions for the electric field power spectral densities are derived from ground-based magnetometer measurements of the magnetic field PSD, and in situ AMPTE and GOES spacecraft measurements are used to derive expressions for the compressional magnetic field PSD as functions of Kp, solar wind speed, and L-shell. Magnetic PSD results measured on the ground are mapped along the field line to give the electric field PSD in the equatorial plane assuming a guided Alfven wave solution and a thin sheet ionosphere. The ULF wave PSDs are then used to derive a set of new ULF-wave driven diffusion coefficients. These new diffusion coefficients are compared to estimates of the electric and magnetic field diffusion coefficients made by Brautigam and Albert (2000) and Brautigam et al. (2005). Significantly, our results, derived explicitly from ULF wave observations, indicate that electric field diffusion is much more important than magnetic field diffusion in the transport and energization of the radiation belt electrons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available