4.3 Article

Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
Volume 117, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JE004018

Keywords

-

Funding

  1. NASA MDAP Program under NASA [NNX10AL61G]
  2. NASA [129877, NNX10AL61G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The Martian polar night distribution of 1.27 mu m (0-0) band emission from O-2 singlet delta [O-2((1)Delta(g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 mu m nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O-2((1)Delta(g)) 1.27 mu m volume emission rates (VER). We also present the first detection of much (x80 +/- 20) weaker 1.58 mu m (0-1) band emission from Mars O-2((1)Delta(g)). Co-located polar night CRISM O-2((1)Delta(g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Meteorologie Dynamique (LMD) general circulation/photochemical model (e. g., Lefevre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O-2((1)Delta(g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O-2((1)Delta(g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mu m band VER reflect the temperature dependence of the rate coefficient for O-2((1)Delta(g)) formation, as provided in Roble (1995).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available