4.3 Article

On the onset of polar mesospheric cloud seasons as observed by SBUV

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JD017350

Keywords

-

Funding

  1. NOAA Climate and Global Change Atmospheric Chemistry Element
  2. NASA [NAS5-03132, NNH09CF72C, NNH08CD48C]
  3. NSF CEDAR [AGS 0737705]

Ask authors/readers for more resources

This paper describes an investigation using data from the Solar Backscatter Ultraviolet (SBUV) satellite instruments to explore and understand variations in the timing of the onset of Polar Mesospheric Cloud (PMC) seasons. Previous work has shown that for several recent southern hemisphere (SH) seasons, the PMC season onset was controlled by the timing of the shift from winter to summer zonal wind flow in the SH stratosphere. We extend the analysis of PMC season onset to 28 years of SBUV observations, including both hemispheres. A multiple linear regression analysis of SBUV data from 1984 to 2011 suggests that the SH PMC season onset is delayed by one day for every day that the zonal wind at 65 degrees S and 50 hPa (similar to 20 km) remains in a winter-like state. In addition, we find that the solar cycle plays a role: The SH season onset is delayed by about ten days at solar maximum compared to solar minimum. In the NH, the PMC season onset is delayed by similar to 7 days at solar maximum compared to solar minimum; variations in the NH stratospheric wind, however, are not correlated with the NH onset date. On the other hand, inter-hemispheric teleconnections are important in the NH; a one-day shift in the NH season onset corresponds to a shift of similar to 1.4 m/s in the SH stratospheric wind at 60.0 degrees S and 20 hPa (similar to 26 km). Neither the NH nor the SH season onset date is correlated with the Quasi-Biennial Oscillation, North Atlantic Oscillation, Arctic Oscillation, or El Nino Southern Oscillation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available