4.3 Article

Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JB008263

Keywords

-

Funding

  1. USGS/NEHRP program
  2. Southern California Earthquake Center

Ask authors/readers for more resources

We study earthquakes within California's Salton Trough from 1981 to 2009 from a precisely relocated catalog. We process the seismic waveforms to isolate source spectra, station spectra and travel-time dependent spectra. The results suggest an average P wave Q of 340, agreeing with previous results indicating relatively high attenuation in the Salton Trough. Stress drops estimated from the source spectra using an empirical Green's function (EGF) method reveal large scatter among individual events but a low median stress drop of 0.56 MPa for the region. The distribution of stress drop after applying a spatial-median filter indicates lower stress drops near geothermal sites. We explore the relationships between seismicity, stress drops and geothermal injection activities. Seismicity within the Salton Trough shows strong spatial clustering, with 20 distinct earthquake swarms with at least 50 events. They can be separated into early-M-max and late-M-max groups based on the normalized occurrence time of their largest event. These swarms generally have a low skew value of moment release history, ranging from -9 to 3.0. The major temporal difference between the two groups is the excess of seismicity and an inverse power law increase of seismicity before the largest event for the late-Mmax group. All swarms exhibit spatial migration of seismicity at a statistical significance greater than 85%. A weighted L1-norm inversion of linear migration parameters yields migration velocities from 0.008 to 0.8 km/hour. To explore the influence of fluid injection in geothermal sites, we also model the migration behavior with the diffusion equation, and obtain a hydraulic diffusion coefficient of approximately 0.25 m(2)/s for the Salton Sea geothermal site, which is within the range of expected values for a typical geothermal reservoir. The swarms with migration velocities over 0.1 km/hour cannot be explained by the diffusion curve, rather, their velocity is consistent with the propagation velocity of creep and slow slip events. These variations in migration behavior allow us to distinguish among different driving processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available