4.3 Article

Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 116, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JC007104

Keywords

-

Categories

Funding

  1. European Union
  2. Ministry of Science, Education and Sports of the Republic of Croatia [001-0013077-1122, 119-1193086-3085]

Ask authors/readers for more resources

A network of high-frequency (HF) radars was installed in the northern Adriatic in the second half of 2007, aimed to measure surface currents in the framework of the North Adriatic Surface Current Mapping (NASCUM) project. This study includes a detailed analysis of current measurements from February to August 2008, a period in which three radars were simultaneously operational. Current patterns and temporal evolutions of different physical processes were extracted by using self-organizing map (SOM) analysis. The analysis focused on subtidal frequency band and extracted 12 different circulation patterns on a 4 x 3 rectangular SOM grid. The SOM was also applied on a joint data set that included contemporaneous surface wind data obtained from the operational hydrostatic mesoscale meteorological model ALADIN/HR. The strongest currents were recorded during energetic bora episodes, being recognized by several current patterns and having the characteristic downwind flow with magnitudes exceeding 35 cm/s at some grid points. Another characteristic wind, the sirocco, was represented by three current patterns, while the remaining current structures were attributed to weak winds and the residual thermohaline circulation. A strong resemblance has been found between SOM patterns extracted from HF radar data only and from combined HF radar and wind data sets, revealing the predominant wind influence to the surface circulation structures and their temporal changes in the northern Adriatic. These results show the SOM analysis being a valuable tool for extracting characteristic surface current patterns and forcing functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available