4.3 Article

On the robustness of global radially anisotropic surface wave tomography

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JB006716

Keywords

-

Funding

  1. NERC [NE/C510916/1, NER/F/S/2001/00369, NE/B505997/1]
  2. Royal Society [2007/R2]
  3. European Commission's Human Resources and Mobility Programme Marie Curie Research Training Network SPICE [MRTN-CT-2003-504267]
  4. Research Computing Service at the University of East Anglia
  5. Natural Environment Research Council [NE/C510916/1, NE/B505997/1] Funding Source: researchfish

Ask authors/readers for more resources

A number of recent global tomographic studies have modeled three dimensional variations in the parameters of radial anisotropy. As yet there is limited agreement among such studies, suggesting significant uncertainties in the models, which could lead to divergent geodynamical interpretations. In this study we assess the robustness of lateral variations in radial anisotropy globally in the upper mantle and in the transition zone to determine the extent to which anisotropic parameters are constrained by a data set of over 10,000,000 fundamental and higher mode surface wave dispersion measurements. We carry out inversions for isotropic and radially anisotropic shear wave velocity, systematically changing regularization and using three different crustal models to remove the effects of the crust on the data. Using crustal corrections from different crustal models has an impact on the data fit comparable or larger than that obtained by including lateral variations of radial anisotropy in the modeling. Moreover, the use of crustal corrections from different a priori crustal models may lead to different images of radial anisotropy suggesting divergent geodynamical interpretations. This work suggests that the three-dimensional determination of global radial anisotropy in the Earth's mantle using surface wave dispersion data is still an ongoing experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available