4.3 Article

Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JB006324

Keywords

-

Funding

  1. U.S. Geological Survey/ARRA award [G10AC00039]
  2. U.S. Geological Survey Mendenhall Program

Ask authors/readers for more resources

Interferometric synthetic aperture radar (InSAR) data indicate that the caldera of Okmok volcano, Alaska, subsided more than a meter during its eruption in 1997. The large deformation suggests a relatively shallow magma reservoir beneath Okmok. Seismic tomography using ambient ocean noise reveals two low-velocity zones (LVZs). The shallow LVZ corresponds to a region of weak, fluid-saturated materials within the caldera and extends from the caldera surface to a depth of 2 km. The deep LVZ clearly indicates the presence of the magma reservoir beneath Okmok that is significantly deeper (>4 km depth) compared to previous geodetic-based estimates (3 km depth). The deep LVZ associated with the magma reservoir suggests magma remains in a molten state between eruptions. We construct finite element models (FEMs) to simulate deformation caused by mass extraction from a magma reservoir that is surrounded by a viscoelastic rind of country rock embedded in an elastic domain that is partitioned to account for the weak caldera materials observed with tomography. This configuration allows us to reduce the estimated magma reservoir depressurization to within lithostatic constraints, while simultaneously maintaining the magnitude of deformation required to predict the InSAR data. More precisely, the InSAR data are best predicted by an FEM simulating a rind viscosity of 7.5 x 10(16) Pa s and a mass flux of -4.2 x 10(9) kg/d from the magma reservoir. The shallow weak layer within the caldera provides a coeruption stress regime and neutral buoyancy horizon that support lateral magma propagation from the central magma reservoir to extrusion near the rim of the caldera.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available