4.3 Article

On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JD013529

Keywords

-

Funding

  1. NSF [NSF-DEB 0743678, NSF-DEB-0620482]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [0743737] Funding Source: National Science Foundation

Ask authors/readers for more resources

Changes in vegetation cover are known for their ability to modify the surface energy balance and near-surface microclimate conditions. A major change in vegetation composition that has been occurring in many dryland regions around the world is associated with the replacement of arid grasslands by desert shrublands. The impact of shrub encroachment on regional climate conditions remains poorly investigated, and, to date, it is unclear how this shift in plant community composition may affect the microclimate. Here we used concurrent meteorological observations at two adjacent sites dominated by Larrea tridentata shrubs and native grass species, respectively, in the northern Chihuahuan desert to investigate differences in nighttime air temperatures between the shrubland and grassland vegetation covers. The nighttime air temperature was found to be substantially higher (>2 degrees C) in the shrubland than in the grassland, especially during calm winter nights. These differences in surface air temperature were accompanied by differences in longwave radiation and sensible and ground heat fluxes. We developed a one-dimensional model to show how longwave radiation emitted by the ground at night can explain the higher nighttime air temperature over the shrubland. Because of the larger fraction of bare soil typically existing in the shrub cover, the ground surface remains less insulated and more energy flows into the ground at the shrubland site than in the grassland during daytime. This energy is then released at night mainly as longwave radiation, which causes the differences in the nighttime air temperatures between the two land covers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available